# **Preliminary communication**

The crystal and molecular structure of *trans*-bis(diphenylmethylphosphine)tricarbonyl manganese hydride

### MICHAEL LAING\*

Chemistry Department, University of Natal, Durban (South Africa)

ERIC SINGLETON

National Chemical Research Laboratory, C.S.I.R., Pretoria (South Africa)

### and GERT KRUGER

National Physical Research Laboratory, C.S.I.R., Pretoria (South Africa) (Received April 16th, 1973)

# SUMMARY

The phosphine ligands in  $HMn(CO)_3(PMePh_2)_2$  are trans-substituted; the trans pair of CO groups are markedly distorted from colinearity.

Recent work<sup>1</sup> on compounds of the type  $Mn_2(CO)_8 L_2$  has shown that the ligands are attached diaxially for  $L = PPh_3$ , PMePh<sub>2</sub> and AsPh<sub>3</sub> but are diequatorial when L =AsMe<sub>2</sub>Ph. The analogous rhenium compounds have been prepared<sup>2</sup> and have been shown to react with excess ligand when irradiated with UV light to yield compounds Re<sub>2</sub>(CO)<sub>7</sub>L<sub>3</sub>. Thermal reaction of Mn<sub>2</sub>(CO)<sub>10</sub> with excess ligand yields Mn<sub>2</sub>(CO)<sub>9</sub>L, Mn<sub>2</sub>(CO)<sub>8</sub>L<sub>2</sub>, paramagnetic Mn(CO)<sub>4</sub>L, and Mn(CO)<sub>3</sub>L<sub>2</sub>H (formed by abstraction of hydrogen from the solvent)<sup>3</sup>. Compounds M(CO)<sub>3</sub>L<sub>2</sub>R where M = Re or Mn, L = substituted arsine or phosphine, R = H, halide or alkyl, have been reported in *trans* and *cis* (facial and meridial) forms, and certain of them have been shown to be labile to rearrangement<sup>4</sup>. The determination of the true stereochemistry of one of the derivatives Mn(CO)<sub>3</sub>L<sub>2</sub>R was thus of interest.

Treatment of  $Mn_2(CO)_{10}$  with a large excess of PMePh<sub>2</sub> in refluxing petroleum ether (b.p. 100–120°) for 12 h, followed by recrystallization from ether-ethanol yielded HMn(CO)<sub>3</sub>(PMePh<sub>2</sub>)<sub>2</sub>. This compound is however more easily formed by treating Mn<sub>2</sub>(CO)<sub>10</sub> with PMePh<sub>2</sub> in refluxing n-propanol. The 2000 cm<sup>-1</sup> region of the IR

C30

<sup>\*</sup>Author to whom correspondence should be addressed.

spectrum is similar to that recorded<sup>3</sup> for HMn(CO)<sub>3</sub>(PPh<sub>3</sub>)<sub>2</sub>, with one very strong band at 1910 cm<sup>-1</sup> typical of a *trans*-disubstituted molecule, but with additional weaker bands at 2000 and 1960 cm<sup>-1</sup>. The <sup>1</sup>H NMR spectrum (Me  $\tau$  7.92 (doublet), J(P-H) 7.2; Hydride 17.38 (triplet), J(P-H) 33; solvent CD<sub>2</sub> Cl<sub>2</sub>) supports this stereochemistry but is not unequivocal because a *trans* configuration is expected<sup>5</sup> to give a triplet for the methyl hydrogens.

HMn(CO)<sub>3</sub>(PMePh<sub>2</sub>)<sub>2</sub> forms well-shaped yellow monoclinic crystals, space group C2/c; a = 16.79; b = 17.20,  $c = 19.03 (\pm 0.01 \text{ Å})$ ,  $\beta 106.0 (\pm 0.1^{\circ})$ , Z = 8. No required noisecular symmetry.

Three dimensional intensity data were measured on a Hilger & Watts four-circle diffractometer with Mo-K<sub> $\alpha$ </sub> radiation. The positions of the heavy atoms were readily deduced from a Patterson map, and the lighter atoms were located from the subsequent Fourier maps. The structure has been refined<sup>6</sup> isotropically by block-diagonal least squares to R 0.10 for 3800 data; refinement is continuing. The hydrogen atom was located as a very low peak in the electron density map: Mn-H 1.5 Å.

The two phosphine ligands are *trans* substituted (Fig. 1). Mn-P(1) 2.253, Mn-P(2) 2.257 Å, angle P-Mn-P 175°; average Mn-C, 1.78, C-O 1.17, P-C 1.86 Å.

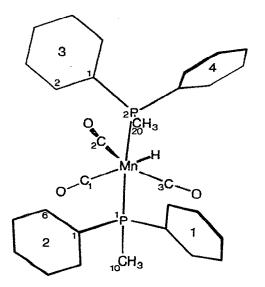



Fig. 1. Projection of the  $HMn(CO)_3(PMePh_2)_2$  molecule down the c axis.

While the  $Mn(CO)_3$  portion of the molecule is coplanar within 0.01 Å, the *trans* pair of CO groups are bent toward the H atom; the C(2)-Mn-C(3) angle is 153°. This large distortion from linearity accounts for the additional peaks observed in the CO stretching region of the infrared absorption spectrum<sup>7</sup>. This distortion allows a decrease of compression strain between the *cis* pairs of CO groups; intramolecular average C···C distance 2.79 Å compared with 2.48 (± 0.06 Å for 8 contacts) in Mn<sub>2</sub>(CO)<sub>8</sub>(PPh<sub>2</sub>Me)<sub>2</sub><sup>1</sup>.

Both phosphine ligands show similar distortions;  $Mn-P(1)-C(2;1) 121^{\circ}$ ,  $Mn-P(2)-C(3;1) 120^{\circ}$ , all other Mn-P-C angles  $114^{\circ}$ ;  $C(3;1)-P(2)-C(20) 99^{\circ}$ ,  $C(2;1)-P(1)-C(10) 99^{\circ}$ , all other C-P-C angles  $102^{\circ}$ . These distortions are due to short intramolecular separations between a phenyl ring and a CO group;  $C(2) \cdots C(2;6) 3.21$  Å,  $C(1) \cdots C(3;2) 3.47$  Å; these compressions are also reflected as small angular distortions about the manganese atom:  $P(1)-Mn-C(2) 93^{\circ}$ ,  $P(2)-Mn-C(1) 92^{\circ}$ . Similar, although smaller distortions have been observed in related compounds<sup>1</sup>.

The  $MnP_2(CO)_3$  skeleton is distorted from square pyramidal towards trigonal bipyramidal, which implies that the paramagnetic species  $Mn(CO)_4(PPh_2 Me)$  will almost certainly be trigonal bipyramidal with the phosphine ligand oriented axially.

The atoms Me(20)-P(2)-Mn-P(1)-Me(10) are close to coplanar, with the two methyl groups *cis* oriented. This arrangement together with the restricted rotation about the Mn-P bonds probably accounts for the simple doublet observed in the NMR spectrum for the methyl protons.

#### REFERENCES

- 1 M. Laing, T. Ashworth, P. Sommerville, E. Singleton and R. Reiman, Chem. Commun., (1972) 1251.
- 2 E. Singleton, J.T. Moelwyn-Hughes and A.W.B. Garner, J. Organometal. Chem., 21 (1970) 449; and J.T. Moelwyn-Hughes, A.W.B. Garner and N. Gordon, J. Organometal. Chem., 26 (1971) 373.
- 3 R. Ugo and F. Bonati, J. Organometal. Chem., 8 (1967) 189.
- 4 P.W. Jolly and F.G.A. Stone, J. Chem. Soc., (1965) 5259; R.J. Angelici, F. Basolo and A.J. Poë, J. Amer. Chem. Soc., 85 (1963) 2215; R.M. Reimann and E. Singleton, J. Organometal. Chem., 44 (1972) C18.
- 5 N. Flitcroft, J.M. Leach and F.J. Hopton, J. Inorg. Nuclear Chem., 32 (1970) 137; P.K. Maples and C.S. Kraihanzel, J. Amer. Chem. Soc., 90 (1968) 6645; J.M. Jenkins and B.L. Shaw, J. Chem. Soc. (A), (1966) 770.
- 6 M. Laing, Acta Cryst., B28 (1972) 986.
- 7 H.J. Buttery, G. Keeling, S.F.A. Kettle, I. Paul and P.J. Stamper, J. Chem. Soc. (A), (1969) 2077; (1969) 2224; (1970) 471.